Главная  Энциклопедии  Словари  Добавить в Избранное



Магнитострикция

Значение слова "Магнитострикция"

Магнитострикция (от магнит и лат. strictio — сжатие, натягивание), изменение формы и размеров тела при намагничивании. Явление М. было открыто Дж. Джоулем в 1842. В ферро- и ферримагнетиках (Fe, Ni, Со, Gd, Tb и других, ряде сплавов, ферритах) М. достигает значительной величины (относительное удлинение Dl / l » 10-6—10-2). В антиферромагнетиках, парамагнетиках и диамагнетиках М. очень мала. Обратное по отношению к М. явление — изменение намагниченности ферромагнитного образца при деформации — называется магнитоупругим эффектом, иногда — Виллари эффектом.

  В современной теории магнетизма М. рассматривают как результат проявления основных типов взаимодействий в ферромагнитных телах: электрического обменного взаимодействия и магнитного взаимодействия (см. Ферромагнетизм). В соответствии с этим возможны 2 вида различных по природе магнитострикционных деформаций кристаллические решётки: за счёт изменения магнитных сил (диполь-дипольных и спин-орбитальных) и за счёт изменения обменных сил.

  При намагничивании ферро- и ферримагнетиков магнитные силы действуют в интервале полей от 0 до поля напряжённостью Hs, в котором образец достигает технического магнитного насыщения Is. Намагничивание в этом интервале полей обусловлено процессами смещения границ между доменами и вращения магнитных моментов доменов. Оба эти процесса изменяют энергетическое состояние кристаллической решётки, что проявляется в изменении равновесных расстояний между её узлами. В результате атомы смещаются, происходит магнитострикционная деформация решётки. М. этого вида носит анизотропный характер (зависит от направления и величины намагниченности J) и проявляется в основном в изменении формы кристалла почти без изменения его объёма (линейная М.). Для расчёта линейной М. существуют полуэмпирические формулы. Так, М. ферромагнитных кристаллов кубической симметрии, намагниченных до насыщения, рассчитывается по формуле:

,

  где si, sj и bi, bj — направляющие косинусы соответственно вектора Js и направления измерения относительно рёбер куба, а1 и a2 — константы анизотропии М., численно равные , , где  и — максимальные линейные М. соответственно в направлении ребра и диагонали ячейки кристалла. Величину ls = (Dl / l) s называют М. насыщения или магнитострикционной постоянной.

  М., обусловленная обменными силами, в ферромагнетиках наблюдается в области намагничивания выше технического насыщения, где магнитные моменты доменов полностью ориентированы в направлении поля и происходит только рост абсолютной величины Js (парапроцесс, или истинное намагничивание). М. за счёт обменных сил в кубических кристаллах изотропна, то есть проявляется в изменении объёма тела. В гексагональных кристаллах (например, гадолинии) эта М. анизотропна. М. за счёт парапроцесса в большинстве ферромагнетиков при комнатных температурах мала, она мала и вблизи точки Кюри, где парапроцесс почти полностью определяет ферромагнитные свойства вещества. Однако в некоторых сплавах с малым коэффициентом теплового расширения (инварных магнитных сплавах) М. велика [в магнитных полях 8×104 а/м (103 э) отношение DV / V 10-5]. Значительная по величине М. парапроцесса возникает также в ферритах при разрушении или создании магнитным полем неколлинеарных магнитных структур.

  М. относится к так называемым чётным магнитным эффектам, так как она не зависит от знака магнитного поля. Экспериментально больше всего изучалась М. в поликристаллических ферромагнетиках. Обычно измеряется относительное удлинение образца в направлении поля (продольная М.) или перпендикулярно направлению поля (поперечная М.). Для металлов и большинства сплавов продольная и поперечная М. в области полей технического намагничивания имеют разные знаки, причём величина поперечной М. меньше, чем продольной, а в области парапроцесса эти величины одинаковы (рис. 1). Для большинства ферритов как продольная, так и поперечная М. отрицательны; причина этого ещё не ясна. Величина, знак и графический ход зависимости М. от напряжённости поля и намагниченности зависят от структурных особенностей образца (кристаллографической текстуры, примесей посторонних элементов, термической и холодной обработки). У Fe (рис. 2) продольная М. в слабом магнитном поле положительна (удлинение тела), а в более сильном поле — отрицательна (укорочение тела). Для Ni при всех значениях поля продольная М. отрицательна. Сложный характер М. в поликристаллических образцах ферромагнетиков определяется особенностями анизотропии М. в кристаллах соответствующего металла. Большинство сплавов Fe — Ni, Fe — Co, Fe — Pt и других имеют положительный знак продольной М.: Dl / l » (1—10)×10-5. Наибольшей продольной М. обладают сплавы Fe — Pt, Fe — Pd, Fe — Со, Mn — Sb, Mn — Cu — Bi, Fe — Rh. Среди ферритов наибольшая М. у CoFe2O4, Tb3Fe5O12, Dy3Fe5O12: Dl / l » (2—25)×10-4. Рекордно высока М. у некоторых редкоземельных металлов, их сплавов и соединений, например у Tb и Dy, у TbFe2 и DyFe2: Dl / l » 10-3—10-2 (в зависимости от величины приложенного поля). М. примерно такого же порядка обнаружена у ряда соединений урана (U3As4, U3P4 и других).

  М. в области технического намагничивания обнаруживает явление гистерезиса (рис. 3). На М. в сильной степени влияют также температура, упругие напряжения и даже характер размагничивания, которому подвергался образец перед измерением.

  Всестороннее изучение М. прежде всего способствует выяснению физической природы сил, которые определяют ферри-, антиферро- и ферромагнитное поведение вещества. Исследование М., особенно в области технического намагничивания, играет также большую роль при изысканиях новых магнитных материалов; например, отмечено, что высокая магнитная проницаемость сплавов типа пермаллоя связана с тем, что в них мала М. (наряду с малым значением константы магнитной анизотропии).

  С магнитострикционными эффектами связаны аномалии теплового расширения ферро-, ферри- и антиферромагнитных тел. Эти аномалии объясняются тем, что магнитострикционные деформации, вызываемые обменными (а в общем случае и магнитными) силами в решётке, проявляются не только при помещении указанных тел в магнитное поле, но также при нагревании их в отсутствии поля (термострикция). Изменение объёма тел вследствие термострикции особенно значительно при магнитных фазовых переходах (в точках Кюри и Нееля, при температуре перехода коллинеарной магнитной структуры в неколлинеарную и других). Наложение этих изменений объёма на обычное тепловое расширение (обусловленное тепловыми колебаниями атомов в решётке) иногда приводит к аномально малому значению коэффициента теплового расширения у некоторых материалов. Экспериментально доказано, например, что малое тепловое расширение сплавов типа инвар объясняется влиянием возникающих при нагреве отрицательных магнитострикционных деформаций, которые почти полностью компенсируют «нормальное» тепловое расширение таких сплавов.

  С М. связаны различные аномалии упругости в ферро-, ферри- и антиферромагнетиках. Резкие аномалии модулей упругости и внутреннего трения, наблюдаемые в указанных веществах в районе точек Кюри и Нееля и других фазовых магнитных переходов, обязаны влиянию М., возникающей при нагреве. Кроме того, при воздействии на ферро- и ферримагнитные тела упругих напряжений в них даже при отсутствии внешнего магнитного поля происходит перераспределение магнитных моментов доменов (в общем случае изменяется и абсолютная величина самопроизвольной намагниченности домена). Эти процессы сопровождаются дополнительной деформацией тела магнитострикционной природы — механострикцией, которая приводит к отклонениям от закона Гука. В непосредственной связи с механострикцией находится явление изменения под влиянием магнитного поля модуля упругости Е ферромагнитных металлов (DЕ-эффект).

  Для измерения М. наибольшее распространение получили установки, работающие по принципу механооптического рычага, позволяющие наблюдать относительные изменения длины образца до 10-6. Ещё большую чувствительность дают радиотехнический и интерференционный методы. Получил распространение также метод проволочных датчиков, в котором на образец наклеивают проволочку, включенную в одно из плечей моста измерительного. Изменение длины проволочки и её электрического сопротивления при магнитострикционном изменении размеров образца с высокой точностью фиксируется электроизмерительным прибором.

  М. нашла широкое применение в технике. На явлении М. основано действие магнитострикционных преобразователей (датчиков) и реле, излучателей и приёмников ультразвука, фильтров и стабилизаторов частоты в радиотехнических устройствах, магнитострикционных линий задержки и т.д.

 

  Лит.: Вонсовский С. В., Магнетизм, М., 1971; Белов К. П., Упругие, тепловые и электрические явления в ферромагнетиках, 2 изд., М. — Л., 1957; Бозорт Р., Ферромагнетизм, перевод с английского, М., 1956; Редкоземельные ферромагнетики и антиферромагнетики, М., 1965; Ультразвуковые преобразователи, перевод с английского, под редакцией И. П. Голяминой, М., 1972.

  К. П. Белов.


Рис. 2. Зависимость продольной магнитострикции ряда поликристаллических металлов, сплавов и соединений от напряжённости магнитного поля.


Рис. 1. Продольная (кривая I) и поперечная (кривая II) магнитострикция сплава Ni (36 %) — Fe (64 %). В слабых полях они имеют разные знаки, в сильных — при парапроцессе — одинаковый знак (здесь магнитострикция носит объёмный характер).


Рис. 3. Магнитострикционный гистерезис железа, обусловленный его магнитным гистерезисом.

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978

Читайте также в БСЭ :

Магнитотеллурическое зондирование
Магнитотеллурическое зондирование (от магнит и лат. tellus, родительный падеж telluris — Земля), МТЗ, метод исследования внутреннего строения Земли, основанный на изучении переменного эл...

Магнитотепловые явления
Магнитотепловые явления, изменения теплового состояния тел при изменениях их магнитного состояния (намагничивании или размагничивании). Различают М. я. при адиабатическом изменении магни...

Магнитотропизм
Магнитотропизм (от магнит и греч. trópos — поворот, направление), изгибание стебля или корня растения в процессе роста под действием постоянного (естественного или искусственного)...





Энциклопедии и словари на ALCALA.RU 2005-2011 год. - Значение слова в Бесплатных онлайн словарях - справочниках
Все тексты выложены на сайте для не коммерческого использования и взяты из открытых источников.
При использовании материалов сайта активная ссылка на ALCALA.RU обязательна!!
Все права на тексты принадлежат только их правообладателям!!